Daftar

METABOLISME KARBOHIDRAT



Di dalam sistem pencernaan dan juga usus halus, semua jenis karbohidrat yang dikonsumsi akan terkonversi menjadi glukosa untuk kemudian diabsorpsi oleh aliran darah dan ditempatkan ke berbagai organ dan jaringan tubuh. Molekul glukosa hasil konversi berbagai macam jenis karbohidrat inilah yang kemudian akan berfungsi sebagai pembentukan energi di dalam tubuh. Molekul glukosa hasil konversi berbaga i macam jenis karbohidrat inilah yang kemudian akan berfungsi sebagai dasar bagi pembentukan energi di dalam tubuh. Melalui berbagai tahapan dalam proses metabolisme, sel-sel yang terdapat di dalam tubuh dapat mengoksidasi glukosa menjadi CO2 & H2O dimana proses ini juga akan disertai dengan produksi energi. Proses metabolisme glukosa yang terjadi didalam tubuh ini akan memberikan kontribusi hampir lebih dari 50% bagi ketersediaan energi.
Di dalam tubuh, karbohidrat yang telah terkonversi menjadi glukosa tidak hanya akan berfungsi sebagai sumber energi utama bagi kontraksi otot atau aktifitas fisik tubuh, namun glukosa juga akan berfungsi sebagai sumber energi bagi sistem syaraf pusat termasuk juga untuk kerja otak. Selain itu, karbohidrat yang dikonsumsi juga dapat tersimpan sebagai cadangan energy dalam bentuk glikogen di dalam otot dan hati. Glikogen otot merupakan salah satu sumber energi tubuh saat sedang berolahraga sedangkan glikogen hati dapat berfungsi untuk membantu menjaga ketersediaan glukosa di dalam sel darah dan sistem pusat syaraf.

MONOSAKARIDA

Monosakarida merupakan jenis karbohidrat sederhana yang terdiri dari 1 gugus cincin. Contoh dari monosakarida yang banyak terdapat di dalam sel tubuh manusia adalah glukosa, fruktosa dan galaktosa. Glukosa di dalam industri pangan lebih dikenal sebagai dekstrosa atau juga gula anggur. Di alam, glukosa banyak terkandung di dalam buah-buahan, sayuran dan juga sirup jagung. Fruktosa dikenal juga sebagai gula buah dan merupakan gula dengan rasa yang paling manis. Di alam fruktosa banyak
terkandung di dalam madu (bersama dengan glukosa), dan juga terkandung diberbagai macam buah-buahan. Sedangkan galaktosa merupakan karbohidrat hasil proses pencernaan laktosa sehingga tidak terdapat di alam secara bebas. Selain sebagai molekul tunggal, monosakarida juga akan berfungsi sebagai molekul dasar bagi pembentukan senyawa karbohidrat kompleks pati (starch) atau selulosa.


A.   METABOLISME GLUKOSA
1.     Pendahuluan



Karbohidrat glukosa merupakan karbohidrat terpenting dalam kaitannya dengan penyediaan energi di dalam tubuh. Hal inidisebabkan karena semua jenis karbohidrat baik monosakarida,disakarida maupun polisakarida yang dikonsumsi oleh manusia akan terkonversi menjadi glukosa di dalam hati. Glukosa inikemudian akan berperan sebagai salah satu molekul utama bagipembentukan energi didalam tubuh.Berdasarkan bentuknya, molekul glukosa dapatdibedakan menjadi 2 jenis yaitu molekul D-Glukosa dan L-Glukosa. Faktor yang menjadi penentu dari bentuk glukosa ini adalah posisi gugus hidrogen (-H) dan alkohol (–OH) dalam struktur molekulnya. Glukosa yang berada dalam bentuk molekul D & L-Glukosa dapat dimanfaatkan oleh sistim tumbuh-tumbuhan, sedangkan sistim tubuh manusia hanya dapat memanfaatkan D-Glukosa.
Di dalam tubuh manusia glukosa yang telah diserap oleh usus halus kemudian akan terdistribusi ke dalam semua sel tubuh melalui aliran darah. Di dalam tubuh, glokosa tidak hanya dapat tersimpan dalam bentuk glikogen di dalam otot dan hati namun juga dapat tersimpan pada plasma darah dalam bentuk glukosa darah (Blood Glocose). Di dalam tubuh selain akan berperan sebagai bahan bakar bagi proses metabolisme, glukosa juga akan berperan sebagai sumber energy utama bagi otak. Melalui proses oksidasi yang terjadi di dalam sel-sel tubuh, glukosa kemudian akan digunakan untuk mensintesis molekul ATP (adenosine triphosphate) yang merupakan molukel molekul dasar penghasil energi di dalam tubuh. Dalam konsumsi keseharian, glukosa akan menyediakan hampir 50—75% dari total kebutuhan energy tubuh. Untuk dapat menghasilkan energi, proses metabolisme glukosa akan berlangsung melalui 2
mekanisme utama yaitu melalui proses anaerobik dan proses aerobik. Proses metabolisme secara anaerobikakan berlangsung didalam sitoplasma (cytoplasm) sedangkan proses metabolisme anaerobik akan berjalan dengan menggunakan enzim sebagai katalis di dalam mitochondria dengan kehadiran Oksigen (O2 ).


2.     Metabolisme Glukosa
2.1.Proses Glikolisis

Tahap awal metabolisme konversi glukosa menjadi energi di dalam tubuh akan berlangsung secara anaerobik melalui proses yang dinamakan Glikolisis (Glycolysis). Proses ini berlangsung dengan mengunakan bantuan 10 jenis enzim yang berfungsi sebagai katalis di dalam sitoplasma (cytoplasm) yang terdapat pada sel eukaryotik (eukaryotic cells). Inti dari keseluruhan proses Glikolisis adalah untuk mengkonversi glukosa menjadi produk akhir berupa piruvat. Pada proses Glikolisis, 1 molekul glukosa yang memiliki 6 atom karbon pada rantainya (C6H12O6) akan terpecah menjadi produk akhir berupa 2 molekul piruvat (pyruvate) yang memiliki 3 atom karbom (C3H3O3). Proses ini berjalan melalui beberapa tahapan reaksi yang disertai dengan terbentuknya beberapa senyawa antara seperti Glukosa 6-fosfat dan Fruktosa 6-fosfat. Selain akan menghasilkan produk akhir berupa molekul piruvat, proses glikolisis ini juga akan menghasilkan molekul ATP serta molekul NADH (1 NADH3 ATP). Molekul ATP yang terbentuk ini kemudian akan diekstrak oleh sel-sel tubuh sebagai komponen dasar sumber energi. Melalui proses glikolisis ini 4 buah molekul ATP & 2 buah molekul NADH (6 ATP) akan dihasilkan serta pada awal tahapan prosesnya akan mengkonsumsi 2 buah molekul ATP sehingga total 8 buah ATP akan dapat terbentuk.


2.2.Respirasi Selular
Tahap metabolisme energi berikutnya akan berlangsung pada kondisi aerobik dengan mengunakan bantuan oksigen (O2). Bila oksigen tidak tersedia maka molekul piruvat hasil proses glikolisis akan terkonversi menjadi asam laktat. Dalam kondisi aerobik, piruvat hasil proses glikolisis akan teroksidasi menjadi produk akhir berupa H2O dan CO2 di dalam tahapan proses yang dinamakan respirasi selular (Cellular respiration). Proses respirasi selular ini terbagi menjadi 3 tahap utama yaitu produksi Acetyl-CoA, proses oksidasi Acetyl-CoA dalam siklus asam sitrat (Citric-Acid Cycle) serta Rantai Transpor Elektron (Electron Transfer Chain/Oxidative Phosphorylation). Tahap kedua dari proses respirasi selular yaitu Siklus Asam Sitrat merupakan pusat bagi seluruh aktivitas metabolisme tubuh. Siklus ini tidak hanya digunakan untuk memproses karbohidrat namun juga digunakan untuk memproses molekul lain seperti protein dan juga lemak. Gambar 2 akan memperlihatkan 3 tahap proses respirasi selular beserta Siklus Asam Sitrat (Citric Acid Cycle) yang berfungsi sebagai pusat metabolisme tubuh.


2.2.1. Produksi Acetyl-CoA/Proses Konversi Pyruvate
Sebelum memasuki Siklus Asam Sitrat (Citric Acid Cycle) molekul piruvat akan teroksidasi terlebih dahulu di dalam mitokondria menjadi Acetyl-Coa dan CO2. Proses ini berjalan dengan bantuan multi enzim pyruvate dehydrogenase complex (PDC) melalui 5 urutan reaksi yang melibatkan 3 jenis enzim serta 5 jenis coenzim. 3 jenis enzim yang terlibat dalam reaksi ini adalah enzim Pyruvate Dehydrogenase (E1), dihydrolipoyl transacetylase (E2) & dihydrolipoyl dehydrogenase (E3), sedangkan coenzim yang telibat dalam reaksi ini adalah TPP, NAD+, FAD, CoA & Lipoate. Gambar 3 akan memperlihatkan secara sederhana proses konversi piruvat. Dari gambar juga dapat dilihat bahwa proses konversi piruvat tidak hanya akan menhasilkan CO2 dan Acetyl-CoA namun juga akan menghasilkan produk samping berupa NADH yang memiliki nilai energy ekivalen dengan 3xATP.
Gambar 3


2.2.2.      Proses oksidasi Acetyl-CoA (Citric-Acyt Cycle)
Molekul Acetyl CoA yang merupakan produk akhir dari proses konversi Pyruvate kemudian akan masuk kedalam Siklus Asam Sitrat. Secara sederhana persamaan reaksi untuk 1 Siklus Asam Sitrat (Citric Acid Cycle) dapat dituliskan :

Acetyl-CoA + oxaloacetate + 3NAD+ + GDP + Pi + FAD àoxaloacetate + 2 CO2 + FADH2 + 3 NADH + 3 H+ + GTP
Siklus ini merupakan tahap akhir dari proses metabolisme energi glukosa. Proses
konversi yang terjadi pada siklus asam sitrat berlangsung secara aerobik di dalam
mitokondria dengan bantuan 8 jenis enzim. Inti dari proses yang terjadi pada siklus ini adalah untuk mengubah 2 atom karbon yang terikat didalam molekul Acetyl-CoA menjadi 2 molekul karbondioksida (CO2), membebaskan koenzim A serta memindahkan energi yang dihasilkan pada siklus ini ke dalam senyawa NADH, FADH2 dan GTP. Selain menghasilkan CO2 dan GTP, dari persamaan reaksi
dapat terlihat bahwa satu putaran Siklus Asam SItrat juga akan menghasilkan molekul NADH & molekul FADH2. Untuk melanjutkan proses metabolisme energi, kedua molekul ini kemudian akan diproses kembali secara aerobik di dalam membran sel mitokondria melalui proses Rantai Transpor Elektron untuk menghasilkan produk akhir berupa ATP dan air (H2O).

2.2.3.      Proses/Rantai Transpor Eletron
Proses konversi molekul FADH2 dan NADH yang dihasilkan dalam siklus asam sitrat (citric acid cycle) menjadi energi dikenal sebagai proses fosforilasi oksidatif (oxidative phosphorylation) atau juga Rantai Transpor Elektron (electron transport chain). Di dalam proses ini, elektron-elektron yang terkandung didalam molekul NADH & FADH2 ini akan dipindahkan ke dalam aseptor utama yaitu oksigen (O2). Pada akhir tahapan proses ini, elektron yang terdapat di dalam molekul NADH akan mampu untuk menghasilkan 3 buah molekul ATP sedangkan elektron yang terdapat dalam molekul FADH2 akan menghasilkan 2 buah molekul ATP.




3.           Energi Metabolisme Glukosa
Secara keseluruhan proses metabolisme Glukosa akan menghasilkan produk samping berupa karbondioksida (CO2) dan air (H2O). Karbondioksida dihasilkan dari siklus Asam Sitrat sedangkan air (H2O) dihasilkan dari proses rantai transport elektron. Melalui proses metabolisme, energi kemudian akan dihasilkan dalam bentuk ATP dan kalor panas. Terbentuknya ATP dan kalor panas inilah yang merupakan inti dari proses metabolisme energi. Melalui proses Glikolisis, Siklus Asam Sitrat dan proses Rantai Transpor Elektron, sel-sel yang tedapat di dalam tubuh akan mampu untuk mengunakan dan menyimpan energi yang dikandung dalam bahan makanan sebagai energi ATP. Secara umum proses metabolisme secara aerobik akan mampu untuk menghasilkan energi yang lebih besar dibandingkan dengan proses secara anaerobik. Dalam proses metabolisme secara aerobik, ATP akan terbentuk sebanyak 36 buah sedangkan proses anaerobik hanya akan menghasilkan 2 buah ATP. Ikatan yang terdapat dalam molekul ATP ini akan mampu untuk menghasilkan energi sebesar 7.3 kilokalor per molnya.


B.   METABOLISME FRUKTOSA
Fruktosa merupakan satu-satunya heksulosa yang terdapat di alam.  Fruktosa merupakan gula termanis, terdapat dalam madu dan buah-buahan bersama glukosa. Fruktosa dapat terbentuk dari hidrolisis suatu disakarida yang disebut sukrosa. Sama seperti glukosa, fruktosa adalah suatu gula pereduksi.
Disebut juga gula buah ataupun levulosa. Merupakan jenis sakarida yang paling manis, banyak dijjumpai pada mahkota bunga, madu dan hasil hidrolisa dari gula tebu. Di dalam tubuh fruktosa didapat dari hasil pemecahan sukrosa. Fruktosa sebagai sumber energy alternative dan berbahaya jika di konsumsi terlalu banyak, bisa membebani hati dan menyebabkan hiperkolesterolemia dan hiperurisemia (peningkatan kadar asam urat). Bersama dwngan sorbitol bisa menyebabkan katarak.


C.   METABOLISME GALAKTOSA
Galaktosa merupakan suatu aldoheksosa. Monosakarida ini jarang terdapat bebas di alam. Umumnya berikatan dengan glukosa dalam bentuk laktosa, yaitu gula yang terdapat dalam susu. Galaktosa mempunyai rasa kurang manis jika dibandingkan dengan glukosa dan kurang larut dalam air. Seperti halnya glukosa, galaktosa juga merupakan gula pereduksi.

No comments:

Post a Comment

Budayakan Berkomentar Atau Bertanya
Silahkan Komentar Di Sini.
Tidak Perlu Mangetik Kata Captcha